If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + 16y + 13 + 0 = 0 Reorder the terms: 13 + 0 + 16y + y2 = 0 Combine like terms: 13 + 0 = 13 13 + 16y + y2 = 0 Solving 13 + 16y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '-13' to each side of the equation. 13 + 16y + -13 + y2 = 0 + -13 Reorder the terms: 13 + -13 + 16y + y2 = 0 + -13 Combine like terms: 13 + -13 = 0 0 + 16y + y2 = 0 + -13 16y + y2 = 0 + -13 Combine like terms: 0 + -13 = -13 16y + y2 = -13 The y term is 16y. Take half its coefficient (8). Square it (64) and add it to both sides. Add '64' to each side of the equation. 16y + 64 + y2 = -13 + 64 Reorder the terms: 64 + 16y + y2 = -13 + 64 Combine like terms: -13 + 64 = 51 64 + 16y + y2 = 51 Factor a perfect square on the left side: (y + 8)(y + 8) = 51 Calculate the square root of the right side: 7.141428429 Break this problem into two subproblems by setting (y + 8) equal to 7.141428429 and -7.141428429.Subproblem 1
y + 8 = 7.141428429 Simplifying y + 8 = 7.141428429 Reorder the terms: 8 + y = 7.141428429 Solving 8 + y = 7.141428429 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + y = 7.141428429 + -8 Combine like terms: 8 + -8 = 0 0 + y = 7.141428429 + -8 y = 7.141428429 + -8 Combine like terms: 7.141428429 + -8 = -0.858571571 y = -0.858571571 Simplifying y = -0.858571571Subproblem 2
y + 8 = -7.141428429 Simplifying y + 8 = -7.141428429 Reorder the terms: 8 + y = -7.141428429 Solving 8 + y = -7.141428429 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + y = -7.141428429 + -8 Combine like terms: 8 + -8 = 0 0 + y = -7.141428429 + -8 y = -7.141428429 + -8 Combine like terms: -7.141428429 + -8 = -15.141428429 y = -15.141428429 Simplifying y = -15.141428429Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.858571571, -15.141428429}
| 4n3/3n3 | | 3x+10=2x+30 | | 12v+10v+14=80 | | x^2+75x-385=0 | | 15+x=-5(-6x-3) | | -5x+8=-37 | | 36=13n-4n | | 22-a=-7(4-7a) | | 2b+4b^2+2b=16 | | 4(3p-4)=-16+7p | | -9+6x=63 | | -5(3+7k)=-3k-15 | | -4(4x+8)-5x=-32+x | | 6(v+5)=12+3v | | 12x^2-14x=0 | | 6x+36=7(x+4) | | 15y^2+37y+18=0 | | -5(5+3n)=39-7n | | -4x^3+84x^2-432x=0 | | -7b-4=-3(5b+4) | | 1/3(6x+12)=3(x-8) | | 6x+7(16-x)=100 | | 3x^3+9x^2-264x=0 | | -7(2m+7)-m=23-6m | | -5-2x=7(5x-6) | | 5p-(3p-5)=-2(p-4) | | Y^2+6v-16=0 | | -4r+36=-6(5r+7) | | 1/3(6x+12)=2(x-8) | | 6(n-2)-3=-3n+3 | | 2x(2)+12=108 | | 9=p/2+7 |